9 research outputs found

    Genome-wide Studies of Verbal Declarative Memory in Nondemented Older People: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium

    No full text
    BACKGROUND: Memory performance in older persons can reflect genetic influences on cognitive function and dementing processes. We aimed to identify genetic contributions to verbal declarative memory in a community setting. METHODS: We conducted genome-wide association studies for paragraph or word list delayed recall in 19 cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, comprising 29,076 dementia- and stroke-free individuals of European descent, aged ≥45 years. Replication of suggestive associations (p < 5 � 10) was sought in 10,617 participants of European descent, 3811 African-Americans, and 1561 young adults. RESULTS: rs4420638, near APOE, was associated with poorer delayed recall performance in discovery (p = 5.57 � 10) and replication cohorts (p = 5.65 � 10). This association was stronger for paragraph than word list delayed recall and in the oldest persons. Two associations with specific tests, in subsets of the total sample, reached genome-wide significance in combined analyses of discovery and replication (rs11074779 [HS3ST4], p = 3.11 � 10, and rs6813517 [SPOCK3], p = 2.58 � 10) near genes involved in immune response. A genetic score combining 58 independent suggestive memory risk variants was associated with increasing Alzheimer disease pathology in 725 autopsy samples. Association of memory risk loci with gene expression in 138 human hippocampus samples showed cis-associations with WDR48 and CLDN5, both related to ubiquitin metabolism. CONCLUSIONS: This largest study to date exploring the genetics of memory function in ∼40,000 older individuals revealed genome-wide associations and suggested an involvement of immune and ubiquitin pathways

    Brain scans from 21,297 individuals reveal the genetic architecture of hippocampal subfield volumes

    No full text
    The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often impaired in individuals with brain disorders characterized by reduced hippocampal volume, including Alzheimer’s disease (AD) and schizophrenia. Given the structural and functional heterogeneity of the hippocampal formation, we sought to characterize the subfields’ genetic architecture. T1-weighted brain scans (n = 21,297, 16 cohorts) were processed with the hippocampal subfields algorithm in FreeSurfer v6.0. We ran a genome-wide association analysis on each subfield, co-varying for whole hippocampal volume. We further calculated the single-nucleotide polymorphism (SNP)-based heritability of 12 subfields, as well as their genetic correlation with each other, with other structural brain features and with AD and schizophrenia. All outcome measures were corrected for age, sex and intracranial volume. We found 15 unique genome-wide significant loci across six subfields, of which eight had not been previously linked to the hippocampus. Top SNPs were mapped to genes associated with neuronal differentiation, locomotor behaviour, schizophrenia and AD. The volumes of all the subfields were estimated to be heritable (h2 from 0.14 to 0.27, all p < 1 × 10^–16) and clustered together based on their genetic correlations compared with other structural brain features. There was also evidence of genetic overlap of subicular subfield volumes with schizophrenia. We conclude that hippocampal subfields have partly distinct genetic determinants associated with specific biological processes and traits. Taking into account this specificity may increase our understanding of hippocampal neurobiology and associated pathologies

    Brain scans from 21,297 individuals reveal the genetic architecture of hippocampal subfield volumes

    Get PDF
    The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often impaired in individuals with brain disorders characterized by reduced hippocampal volume, including Alzheimer’s disease (AD) and schizophrenia. Given the structural and functional heterogeneity of the hippocampal formation, we sought to characterize the subfields’ genetic architecture. T1-weighted brain scans (n = 21,297, 16 cohorts) were processed with the hippocampal subfields algorithm in FreeSurfer v6.0. We ran a genome-wide association analysis on each subfield, co-varying for whole hippocampal volume. We further calculated the single-nucleotide polymorphism (SNP)-based heritability of 12 subfields, as well as their genetic correlation with each other, with other structural brain features and with AD and schizophrenia. All outcome measures were corrected for age, sex and intracranial volume. We found 15 unique genome-wide significant loci across six subfields, of which eight had not been previously linked to the hippocampus. Top SNPs were mapped to genes associated with neuronal differentiation, locomotor behaviour, schizophrenia and AD. The volumes of all the subfields were estimated to be heritable (h2 from 0.14 to 0.27, all p < 1 × 10–16) and clustered together based on their genetic correlations compared with other structural brain features. There was also evidence of genetic overlap of subicular subfield volumes with schizophrenia. We conclude that hippocampal subfields have partly distinct genetic determinants associated with specific biological processes and traits. Taking into account this specificity may increase our understanding of hippocampal neurobiology and associated pathologies.publishedVersion© The Author(s) 2018. This article is licensed under a Creative Commons Attribution 4.0 International License

    Common brain disorders are associated with heritable patterns of apparent aging of the brain

    No full text
    Common risk factors for psychiatric and other brain disorders are likely to converge on biological pathways influencing the development and maintenance of brain structure and function across life. Using structural MRI data from 45,615 individuals aged 3–96 years, we demonstrate distinct patterns of apparent brain aging in several brain disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals and common brain disorders

    Publisher Correction: Common brain disorders are associated with heritable patterns of apparent aging of the brain (Nature Neuroscience, (2019), 22, 10, (1617-1623), 10.1038/s41593-019-0471-7)

    No full text
    In the version of this article initially published, spaces were missing in the names of Stephanie Le Hellard and Pasquale Di Carlo. The errors have been corrected in the HTML and PDF versions of the article

    Genome-wide studies of verbal declarative memory in nondemented older people: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium

    No full text
    BACKGROUND: Memory performance in older persons can reflect genetic influences on cognitive function and dementing processes. We aimed to identify genetic contributions to verbal declarative memory in a community setting. ME

    Genome-wide Studies of Verbal Declarative Memory in Nondemented Older People: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium

    No full text
    corecore